LLM API costs can quickly add up, especially when processing large datasets. TOON format can reduce your costs by 30-60%. Here's how to implement it effectively.
Understanding LLM Pricing
| Model | Input Cost (per 1M tokens) | Output Cost (per 1M tokens) |
|---|---|---|
| GPT-4o | $2.50 | $10.00 |
| GPT-4 Turbo | $10.00 | $30.00 |
| Claude 3 Opus | $15.00 | $75.00 |
| Claude 3.5 Sonnet | $3.00 | $15.00 |
| Gemini 1.5 Pro | $3.50 | $10.50 |
Real-World Cost Savings
Let's calculate savings for a real e-commerce product catalog:
import tiktoken
def calculate_cost(text, model="gpt-4-turbo"):
enc = tiktoken.encoding_for_model(model)
tokens = len(enc.encode(text))
cost_per_token = 10 / 1_000_000 # $10 per 1M for GPT-4 Turbo input
return tokens, tokens * cost_per_token
# For 1000 products:
# JSON: ~45,000 tokens = $0.45
# TOON: ~18,000 tokens = $0.18
# Savings: 60% = $0.27 per request
Monthly Cost Projection
def project_monthly_savings(daily_requests, records_per_request):
"""Calculate monthly savings from JSON to TOON conversion"""
# Approximate tokens per record
json_tokens_per_record = 45
toon_tokens_per_record = 18
# Monthly calculations
monthly_requests = daily_requests * 30
total_records = monthly_requests * records_per_request
json_total_tokens = total_records * json_tokens_per_record
toon_total_tokens = total_records * toon_tokens_per_record
# Cost calculation (GPT-4 Turbo: $10/1M input)
cost_per_million = 10
json_cost = (json_total_tokens / 1_000_000) * cost_per_million
toon_cost = (toon_total_tokens / 1_000_000) * cost_per_million
return {
"json_cost": json_cost,
"toon_cost": toon_cost,
"monthly_savings": json_cost - toon_cost,
"savings_percent": (1 - toon_cost/json_cost) * 100
}
# Example: E-commerce app with 100 daily product analysis requests
result = project_monthly_savings(daily_requests=100, records_per_request=500)
print("Monthly JSON cost: $" + str(result['json_cost']))
print("Monthly TOON cost: $" + str(result['toon_cost']))
print("Monthly savings: $" + str(result['monthly_savings']))
# Output:
# Monthly JSON cost: $675.00
# Monthly TOON cost: $270.00
# Monthly savings: $405.00 per month!
Implementation Pattern: Preprocessing Pipeline
class LLMDataPipeline {
constructor(apiKey) {
this.apiKey = apiKey;
}
async query(data, question, options = {}) {
const useToon = options.optimizeTokens !== false;
// Convert to TOON for token optimization
const formattedData = useToon
? this.jsonToToon(data)
: JSON.stringify(data, null, 2);
const prompt = this.buildPrompt(formattedData, question, useToon);
// Track token usage
const inputTokens = this.countTokens(prompt);
console.log('Input tokens: ' + inputTokens + ' (' + (useToon ? 'TOON' : 'JSON') + ')');
return await this.callLLM(prompt);
}
buildPrompt(data, question, isToon) {
const formatNote = isToon
? 'Data is in TOON format (tabular arrays with field headers)'
: 'Data is in JSON format';
return formatNote + '\n\nDATA:\n' + data + '\n\nQUESTION: ' + question;
}
jsonToToon(data) {
// ... conversion logic
}
countTokens(text) {
// Approximate: 1 token = 4 characters
return Math.ceil(text.length / 4);
}
}
Best Practices Checklist
- Use TOON for uniform arrays - Greatest token savings
- Pre-process data client-side - Convert before API call
- Batch similar records - Maximize tabular efficiency
- Include format hints - Tell LLM about TOON format
- Monitor token usage - Track actual savings
- Cache frequent conversions - Avoid redundant processing
ROI Calculator
function calculateROI(params) {
const dailyRequests = params.dailyRequests;
const avgRecordsPerRequest = params.avgRecordsPerRequest;
const modelCostPerMillionTokens = params.modelCostPerMillionTokens;
const jsonTokensPerRecord = 45;
const toonTokensPerRecord = 18;
const monthlyRequests = dailyRequests * 30;
const yearlyRequests = dailyRequests * 365;
const jsonMonthlyTokens = monthlyRequests * avgRecordsPerRequest * jsonTokensPerRecord;
const toonMonthlyTokens = monthlyRequests * avgRecordsPerRequest * toonTokensPerRecord;
const jsonMonthlyCost = (jsonMonthlyTokens / 1000000) * modelCostPerMillionTokens;
const toonMonthlyCost = (toonMonthlyTokens / 1000000) * modelCostPerMillionTokens;
return {
monthlySavings: jsonMonthlyCost - toonMonthlyCost,
yearlySavings: (jsonMonthlyCost - toonMonthlyCost) * 12,
savingsPercent: ((jsonMonthlyCost - toonMonthlyCost) / jsonMonthlyCost * 100).toFixed(1)
};
}
// Example calculation
const roi = calculateROI({
dailyRequests: 500,
avgRecordsPerRequest: 100,
modelCostPerMillionTokens: 10 // GPT-4 Turbo
});
console.log('Monthly savings: $' + roi.monthlySavings.toFixed(2));
console.log('Yearly savings: $' + roi.yearlySavings.toFixed(2));
console.log('Savings: ' + roi.savingsPercent + '%');
// Monthly savings: $405.00
// Yearly savings: $4,860.00
// Savings: 60.0%
🔧 Try Our Free TOON Converter
Convert your JSON to TOON format instantly and see your token savings in real-time!
⚡ Open TOON Converter