AI & Machine Learning

MLOps Best Practices: Building Production-Ready ML Pipelines

📅 December 12, 2025 ⏱️ 2 min read 👁️ 11 views 🏷️ AI & Machine Learning

MLOps (Machine Learning Operations) bridges the gap between ML development and production deployment. This guide covers essential practices for building robust ML systems.

What is MLOps?

MLOps applies DevOps principles to machine learning, focusing on:

  • Reproducible ML pipelines
  • Model versioning and registry
  • Automated testing and validation
  • Continuous training and deployment
  • Model monitoring and governance

1. ML Pipeline Architecture


# Example MLOps pipeline with Kubeflow
from kfp import dsl
from kfp.components import create_component_from_func

@dsl.component
def preprocess_data(input_path: str, output_path: str):
    import pandas as pd
    from sklearn.preprocessing import StandardScaler
    
    df = pd.read_csv(input_path)
    scaler = StandardScaler()
    df_scaled = pd.DataFrame(scaler.fit_transform(df), columns=df.columns)
    df_scaled.to_csv(output_path, index=False)

@dsl.component
def train_model(data_path: str, model_path: str):
    import joblib
    from sklearn.ensemble import RandomForestClassifier
    import pandas as pd
    
    df = pd.read_csv(data_path)
    X, y = df.drop('target', axis=1), df['target']
    
    model = RandomForestClassifier(n_estimators=100)
    model.fit(X, y)
    
    joblib.dump(model, model_path)

@dsl.pipeline(name='ml-training-pipeline')
def ml_pipeline():
    preprocess_task = preprocess_data(input_path='raw_data.csv', 
                                       output_path='processed_data.csv')
    train_task = train_model(data_path=preprocess_task.outputs['output_path'],
                             model_path='model.pkl')

2. Model Versioning with MLflow


import mlflow
import mlflow.sklearn
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score

# Start MLflow run
with mlflow.start_run():
    # Log parameters
    mlflow.log_param("n_estimators", 100)
    mlflow.log_param("max_depth", 10)
    
    # Train model
    model = RandomForestClassifier(n_estimators=100, max_depth=10)
    model.fit(X_train, y_train)
    
    # Log metrics
    predictions = model.predict(X_test)
    accuracy = accuracy_score(y_test, predictions)
    mlflow.log_metric("accuracy", accuracy)
    
    # Log model
    mlflow.sklearn.log_model(model, "random_forest_model")
    
    print(f"Model logged with accuracy: {accuracy:.4f}")

3. CI/CD for Machine Learning


# .github/workflows/ml-pipeline.yml
name: ML Pipeline

on:
  push:
    branches: [main]
  schedule:
    - cron: '0 0 * * 0'  # Weekly retraining

jobs:
  train-and-deploy:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v3
      
      - name: Setup Python
        uses: actions/setup-python@v4
        with:
          python-version: '3.9'
      
      - name: Install dependencies
        run: pip install -r requirements.txt
      
      - name: Run data validation
        run: python scripts/validate_data.py
      
      - name: Train model
        run: python scripts/train.py
      
      - name: Run model tests
        run: pytest tests/test_model.py
      
      - name: Deploy to staging
        if: success()
        run: python scripts/deploy.py --env staging

4. Model Monitoring


from evidently import ColumnMapping
from evidently.dashboard import Dashboard
from evidently.tabs import DataDriftTab, ModelPerformanceTab

def monitor_model(reference_data, production_data, predictions):
    column_mapping = ColumnMapping()
    column_mapping.target = 'target'
    column_mapping.prediction = 'prediction'
    
    dashboard = Dashboard(tabs=[
        DataDriftTab(),
        ModelPerformanceTab()
    ])
    
    dashboard.calculate(reference_data, production_data, column_mapping)
    dashboard.save("monitoring_report.html")
    
    # Alert on significant drift
    drift_score = calculate_drift_score(reference_data, production_data)
    if drift_score > 0.3:
        send_alert("Data drift detected! Score: {:.2f}".format(drift_score))

5. Feature Store with Feast


from feast import FeatureStore, Entity, Feature, FeatureView
from feast.types import Float64, Int64

# Define entity
customer = Entity(
    name="customer_id",
    join_key="customer_id",
    description="Customer identifier"
)

# Define feature view
customer_features = FeatureView(
    name="customer_features",
    entities=[customer],
    features=[
        Feature(name="total_purchases", dtype=Float64),
        Feature(name="avg_order_value", dtype=Float64),
        Feature(name="days_since_last_order", dtype=Int64),
    ],
    online=True,
    source=customer_data_source,
)

# Get features for inference
store = FeatureStore(repo_path="feature_repo/")
features = store.get_online_features(
    features=["customer_features:total_purchases", 
              "customer_features:avg_order_value"],
    entity_rows=[{"customer_id": 12345}]
)

MLOps Tools Landscape

Category Tools
Experiment TrackingMLflow, Weights & Biases, Neptune
Pipeline OrchestrationKubeflow, Airflow, Prefect, Dagster
Feature StoreFeast, Tecton, Hopsworks
Model ServingTensorFlow Serving, Seldon, BentoML
MonitoringEvidently, Arize, WhyLabs

Implementing MLOps practices ensures your ML models are reliable, reproducible, and production-ready!

🏷️ Tags:
mlops machine learning devops ml pipeline model deployment mlflow

📚 Related Articles