AI code generation tools boost developer productivity by suggesting code completions, generating functions, and debugging errors.
GitHub Copilot Setup
# Install Copilot extension in VS Code
# Then use inline suggestions while coding
def fibonacci(n):
# Copilot suggests implementation
if n <= 1:
return n
return fibonacci(n-1) + fibonacci(n-2)
# Copilot can generate entire functions from comments
# Type: "# function to reverse a string"
# Copilot suggests complete implementation
CodeLlama for Code Generation
from transformers import AutoTokenizer, AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("codellama/CodeLlama-7b-hf")
tokenizer = AutoTokenizer.from_pretrained("codellama/CodeLlama-7b-hf")
prompt = "def binary_search(arr, target):"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=200)
code = tokenizer.decode(outputs[0])
print(code)
OpenAI for Code Generation
import openai
response = openai.chat.completions.create(
model="gpt-4",
messages=[
{"role": "system", "content": "You are a Python coding expert."},
{"role": "user", "content": "Write a function to find prime numbers up to n"}
]
)
generated_code = response.choices[0].message.content
print(generated_code)
Code Review with AI
code_to_review = """
def calculate_total(items):
total = 0
for i in range(len(items)):
total = total + items[i]
return total
"""
prompt = f"""
Review this code for:
1. Performance issues
2. Pythonic improvements
3. Edge cases
Code:
{code_to_review}
"""
response = openai.chat.completions.create(
model="gpt-4",
messages=[{"role": "user", "content": prompt}]
)
print(response.choices[0].message.content)
AI code generation accelerates development while maintaining code quality!